On-Line Electric Vehicle (OLEV) Project and Vehicular Wireless Power Transfer Technology

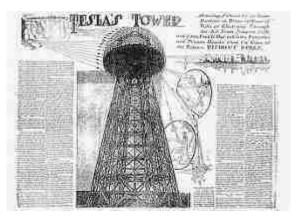
2017. 04. 26.

Seungyoung Ahn Associate Professor

Cho Chun Shik Graduate School of Green Transportation KAIST

Contents

□ Introduction


□ On-Line Electric Vehicle Project

- Project Overview
- Fundamentals
- Public Bus Application
- Railway Application
- Electromagnetic Compatibility Issues
 - ≻ EMF
 - ≻ EMI

□ Summary

Wireless Power Transfer Technologies

- Nikola Tesla (New York American, May 22, 1904)
 - Tesla's Tower ¹)
 - Scheme of drawing millions of volts of electricity through the air
 - From Niagara Falls out to cities, factories and private houses from the towers without wires.

- ➢ MIT (Science, July, 2006)
 - Wireless Power Transfer via Strongly Coupled Magnetic Resonances²⁾
 - Self-resonant coils in a strongly coupled regime
 - Experimental demonstration of wireless power transfer
 - 60 watts with ~40% coil-to-coil efficiency over distances of 2 meters

Applications of Wireless Power Transfer Technology

mW mW~W W kW~MW ~G\

Size & Distance & Power

4

Categorization of Wireless Power Transfer Technologies

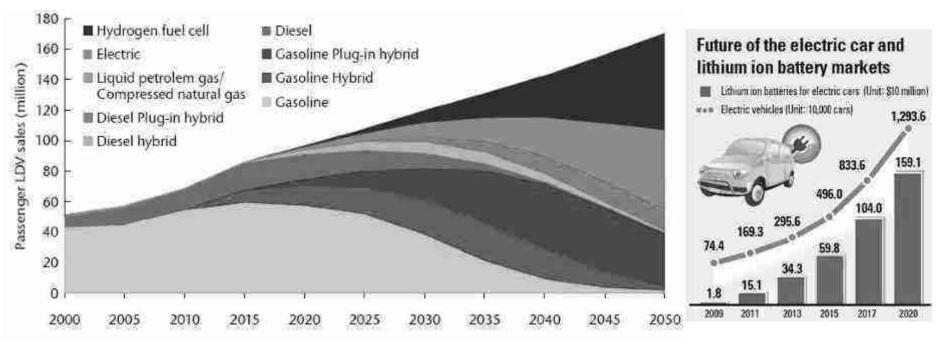
	Magnetic Resonant (Magnetic Induction / Resonance)	Microwave
Frequency	kHz ~ MHz (20, 60, 85 kHz for EV) (100~300 kHz, 6.78 MHz for Mobile)	GHz (2.45 GHz, 5.8 GHz)
Distance	cm ~ m	m ~ km
Power	mW ~ MW (mW~W for Sensor) (kW~MW for EV and Train)	mW ~ GW (mW for Sensor, IoT) (5~10 W for Mobile) (kW~MW for SPS*)
Efficiency	50 % ~ 95 %	10 % ~ 70 %
Application	Mobile, EV	Mobile, Long Dist.
		*SPS: Solar Power Satellite

5

Electric Vehicle – Necessity of Green Transportation

Exhaustion of Oil Resource

KAIST


Air Pollution, Energy consumption, Traffic Accident, Discomfort

Demand for eco-friendly, low-cost, and highly-efficient transportation system

6

Electric Vehicle – Battery Dependency

□ The dependency of the battery in electric vehicles is increasing.

7

Source: International Energy Agency 2009 (http://www.iea.org)

KAIST

Source: JP Morgan

Electric Vehicle – Problems in Battery

Battery charging/changing time is still longer than fueling.
 Battery is the most expensive part in EV.

EV Battery Issues (Weight, Price, Capacity) EV Battery Charging Issues (Charging Time, Driving Distance, Safety)

TransmissionPower Electronics5%2%

Motor 15%

Electro-mechanic Devices

19%

Lithium Ion Battery 59%

8

Project Overview – Project Progress

2009	 January: Research Planning by National Science and Technology Council May: R&D fund support by Ministry of Education, Science and Technology
2010	 March: Completion Ceremony of Seoul Grand Park Pilot Test System April: R&D fund support by Ministry of Knowledge and Economy November: Time Magazine's 2010 Best Inventions
2011	 July: OLEV Tram Commercial Operation at Seoul Grand Park November_ R&D fund support by Ministry of Land, Transport and Maritime Affairs
2012	 May-August: Demonstration Operation for OLEV Bus in Expo 2012 Yeosu Korea September: Certification of Power Infrastructure and OLEV Bus Commercial Operation for OLEV Bus at KAIST Campus
2013	 February: The top 10 Emerging Technologies 2013 by World Economic Forum June: Demonstration of 60kHz SMFIR Technology with its Application to Catenary- Free Trams (200 kW)
2014	 March: Demonstration of 60kHz SMFIR Technology with its Application to High Speed Train(1 MW) Commercial Operation of OLEV Bus in Gumi City Area December: Sustainable Development Award in 2nd UIC (International Union of Railways) Innovation Awards
2015	
2016	 May: Wireless Railway Project Continued (2nd Year)
KAIST	9

R&D Achievements

KAIST

		2009 MEST * [Core technology]	2010-2011 MKE* [Practical technology]	2012-2013 MLTM* [Commercialization]
Outcome		 Development of original power supply and collection technology Implementation and verification of core technology 	 Improving core technology Development of common-core technology to verify usability 	 Construction of standard power supply infrastructure and bus system Commercial operation of OLEV bus and infrastructure by local governments (2013)
(Cost	25 million	15 million	20 million
	Air Gap	20 cm	20 cm	20 cm
Specification	Efficiency	Max. 72%	Max. 80%	Max. 85%
	Power Capacity	60kW	75kW	100kW
Patents		•Domestic : 125 •Foreign : 9	•Domestic : 127 •Foreign :52	•Domestic : 12 •Foreign : 3

* MEST : Ministry of Education, Science and Technology * MKE : Ministry of Knowledge Economy * MLTM : Ministry of Land, Transport and Maritime

Affairs 10

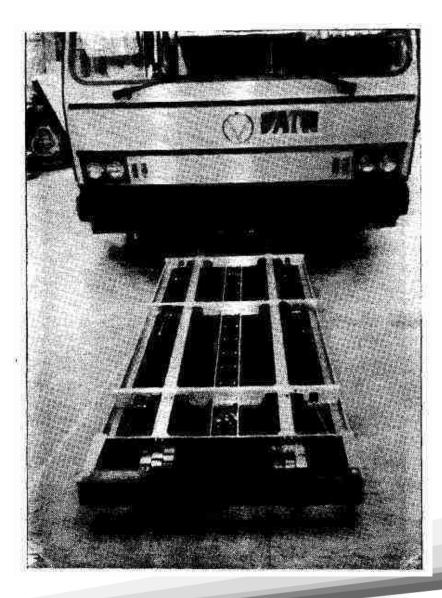
Previous Work (PATH Project in California)

Institute of Transportation Studies California Partners for Advanced Transit and Highways (PATH) (University of California, Berkeley)

Year 1992

KAIST

Pager UCB/ITS/PBR/02/3


Research Reports Feasibility Study Of Advanced Technology Hov Systems: Volume 2a: Feasibility Of Implementing Roadway Powered Electric Vehicle Technology In El Monte Busway: A Case Study

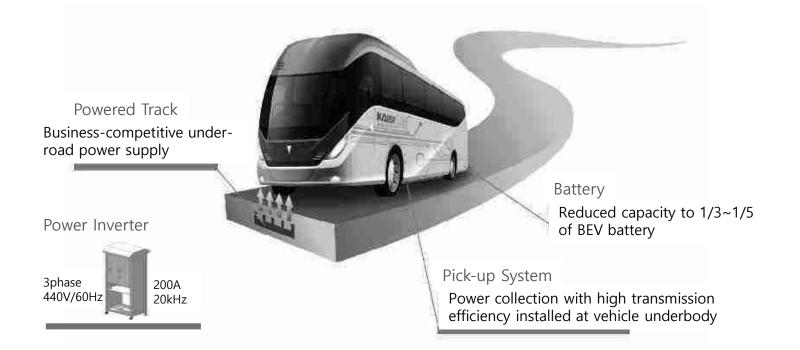
Ted Chira-Chavala

Edward H. Lechner

Dan M. Empoy

This paper is posted at the eScholarship Repository, University of California. http://repositorias.edub.org/Re/path/reports/UCB-ITS-PRR-92-3 Copyright @1992 by the authors.

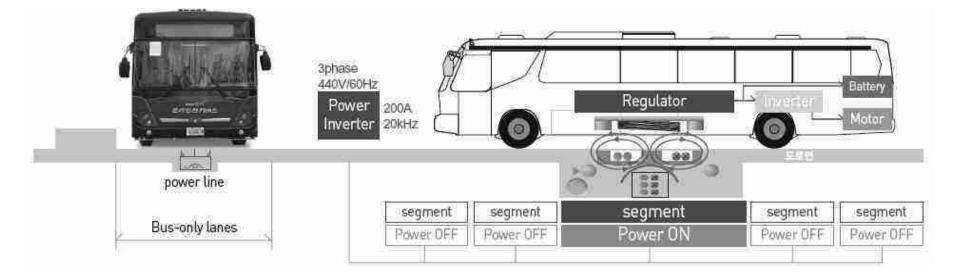
Comparison of WPT Technologies in Vehicles


Field	Institute	Charging Type	Contents	
Vehicle	PATH	Charging during stop and driving	 Air gap : 7.5cm Efficiency : 60% Capacity : 60kW 	
	Wampfler	Charging at stop	 Air gap : 3cm Efficiency : 86% Capacity : 60kW(30kW x 2) 	
	Showa	Charging at stop	 Air gap : 10cm Efficiency : 92%(30,60kW), 93%(150kW) Capacity : 30kW, 60kW, 150kW 	143
	OLEV	Charging during stop and driving	 Air gap : 20cm (35cm: core to core) Efficiency :Max. 85% Capacity : 100kW EMF Level : below 6.25 µT 	

Project Overview – Concept

KAIST

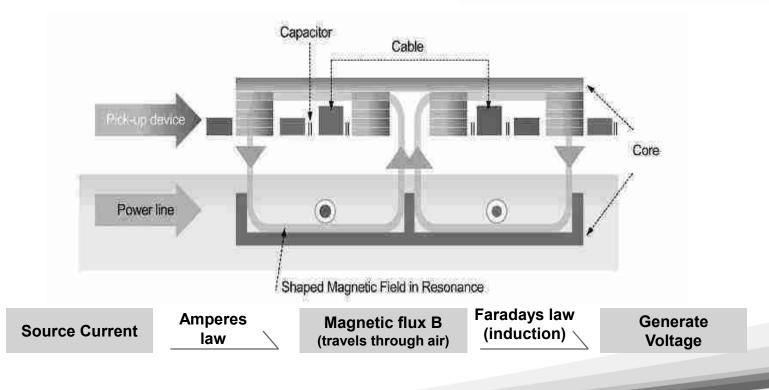
Solving battery and charging problems by developing OLEV,


which enables wireless electric power transmission while vehicle is stopping or running.

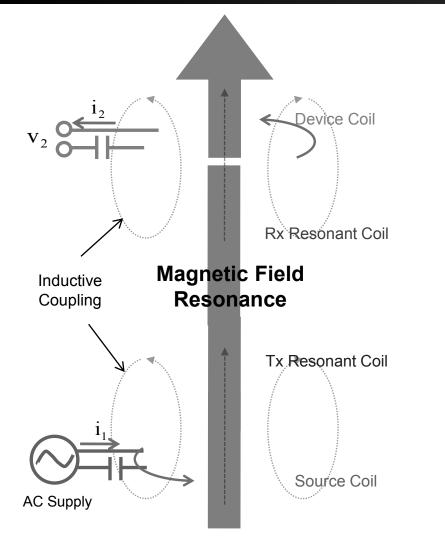
A pickup device installed under the vehicle works to collect the magnetic field from power cables laid under the road and convert it into electric energy for vehicle operation.

13

Principle & Core Technology – Principle

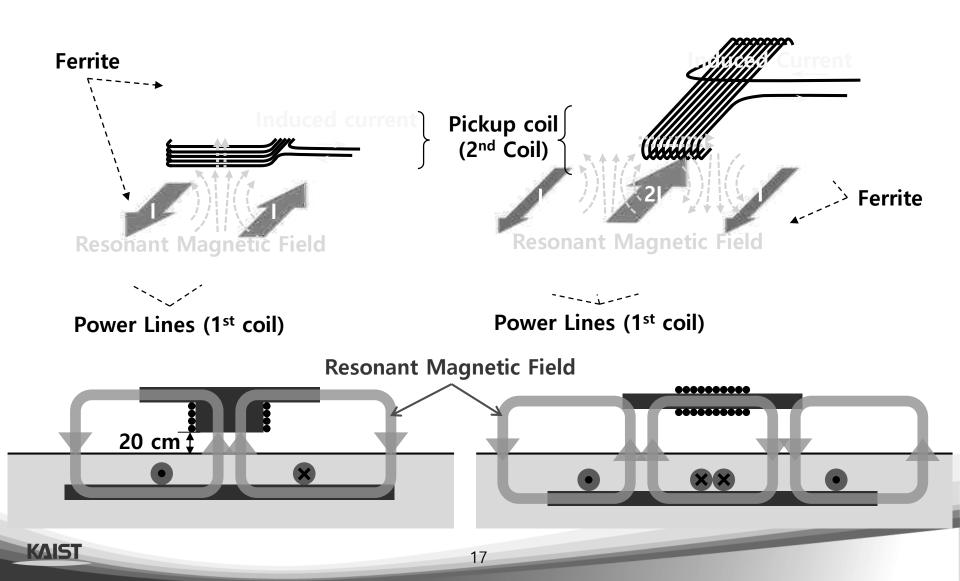


Power inverter	Road embedded power line	Pickup module	Regulator
Generate high-frequency currentHigh-efficiency resonant control	•Meet safety standards for EMF	Installed under vehicleContactless power transfer	Battery charge or motor drivingCharging while stopping or driving

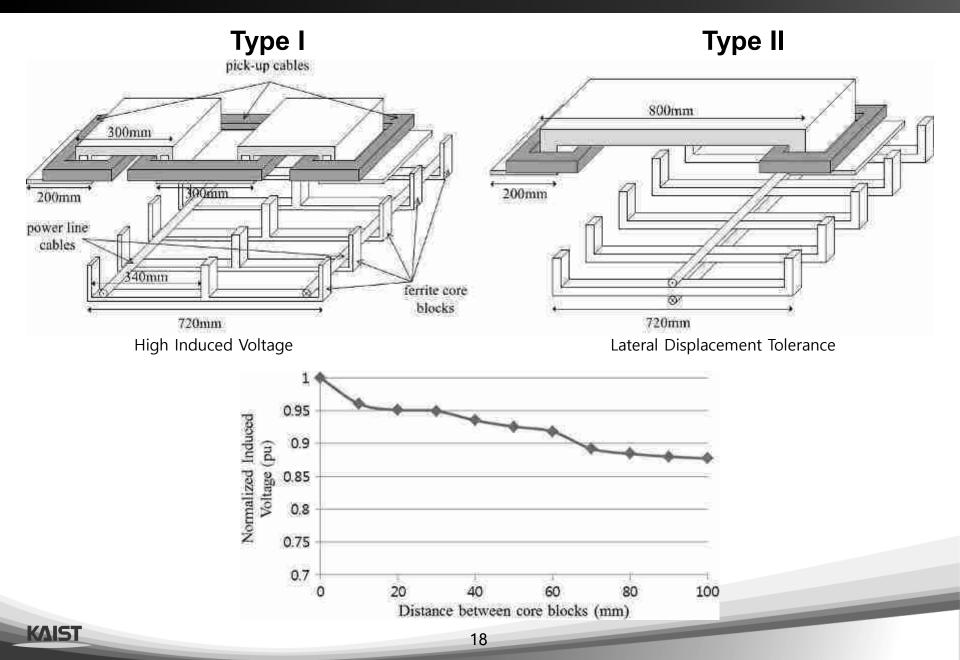

Principle & Core Technology – Core Technology

- Acquisition of core technology : SMFIR(Shaped Magnetic Field in Resonance)
- The SMFIR is "Shaped Magnetic Field in Resonance" technology, which safely delivers high amounts of energy to an electric vehicle while it is stationary or in motion.

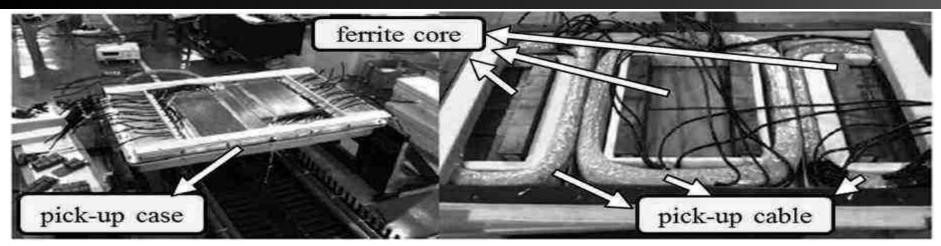
Mechanism of Wireless Power Transfer

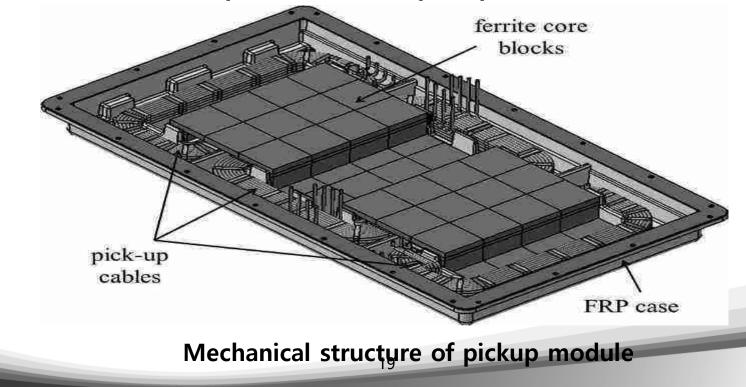

 $v_2 = j\omega M i_1$

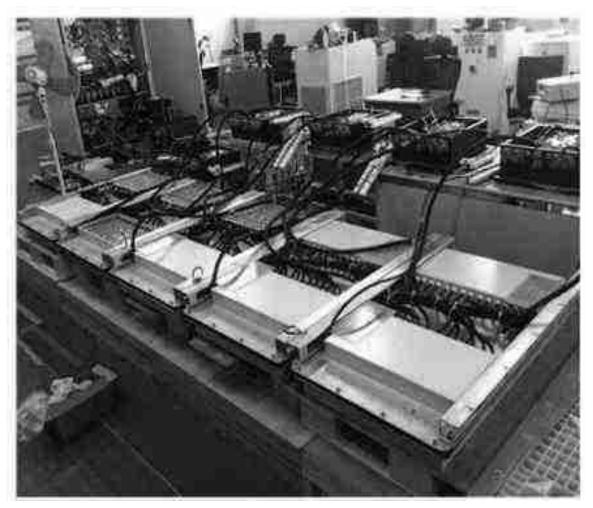
- Voltage induced at port 2
- Matching circuit for resonance
- Design Parameters: Power circuits, Magnetic field design, Frequency
- Feedback by i2
- Maximum power transfer at resonance frequency


Coil and Core Design for Dynamic/Static Wireless Charging

Vertical Magnetic Flux Type

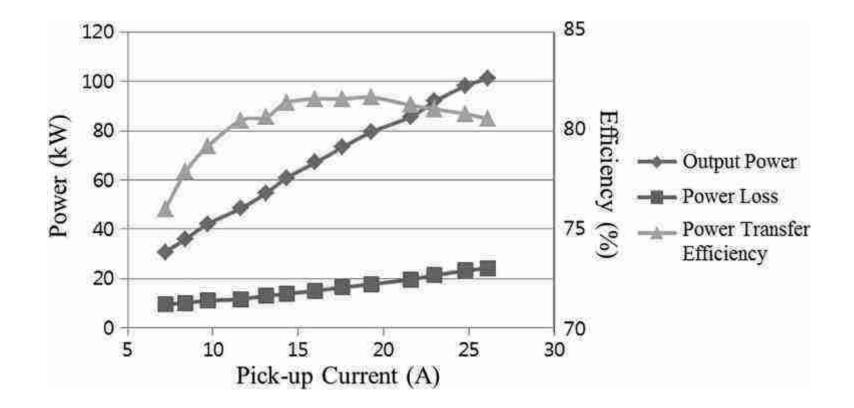

Horizontal Magnetic Flux Type


Coil and Core Design for Dynamic/Static Wireless Charging


Pickup System

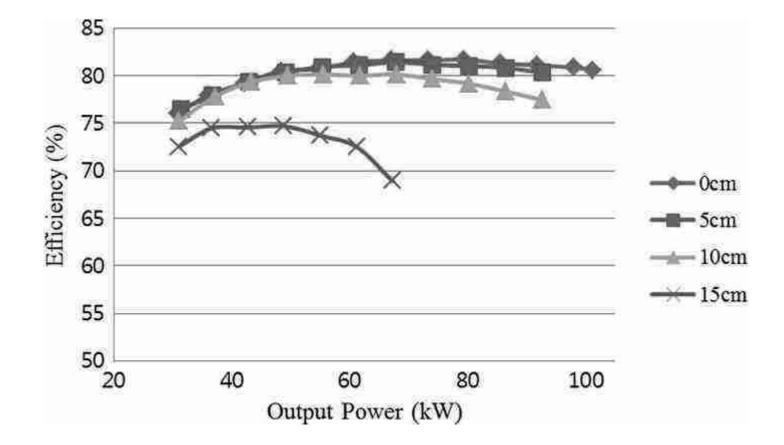
Implementation of pickup module

Pickup Modules for Wireless Charging Electric Bus

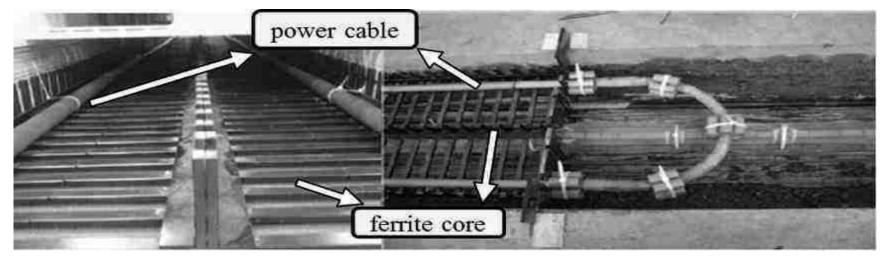


Power supply and pickup system implemented in laboratory

20


Output Power and Efficiency

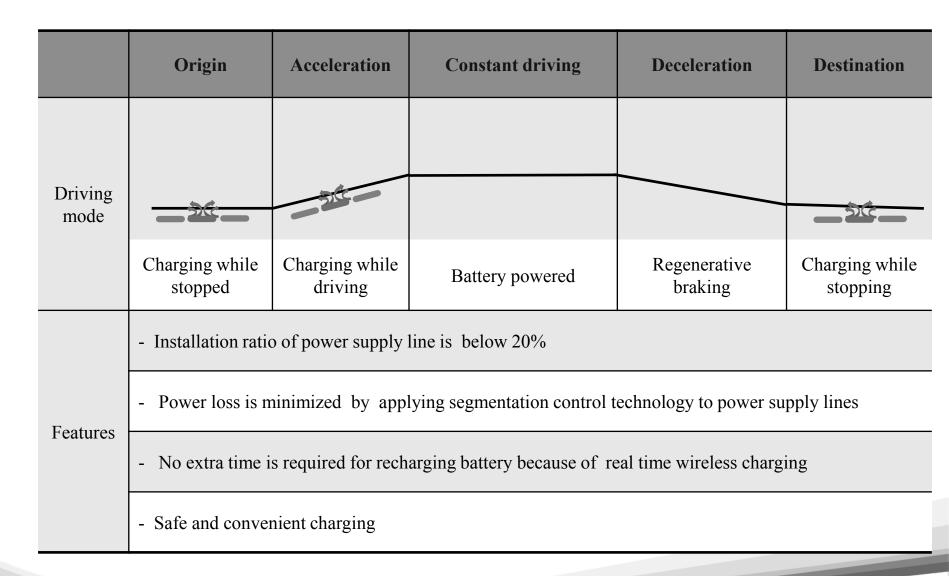
KAIST


Output powers, power loss, and power transfer efficiency as functions of pickup current

Effect of Lateral Displacement on the Efficiency

22

Power Line Module



Implementation of power line module

Pre-casting concrete type of power line module

Wireless Charging Technology for Bus Operation

R&D Achievements

Contents	Progress	Remarks
Electromagnetic Field	Completion of frequency allocation (20kHz, 60kHz)	KCC (Korea Communications Commission)
Road Structure	Revision of the road decree allowing power line installation	MLTM (Minister of Land, Transport and Maritime Affairs)
Electrical Safety Electrical Safety standards for OLEV Private region / Public region		MKE (Ministry of Knowledge Economy)
Vehicle Certification	OLEV vehicle safety standards Private region / Public region	MLTM (Minister of Land, Transport and Maritime Affairs)

OLEV Systems in Korea

Seoul Grand Park (July 2011)

Installation: 372.5m(16%) of total 2.2 km

OLEV Shuttle Bus at KAIST (Oct. 2012)

Yeosu Expo 2012 (May~Aug. 2012)

Installation: 36m(3%) of total 1.2 km

Gumi City (March 2014)

Installation: 144m(0.6%) of total 24km

Installation: 60m(1.6%) of total 3.76 km

Sejong City (June 2015)

Bus centered public Transportation system

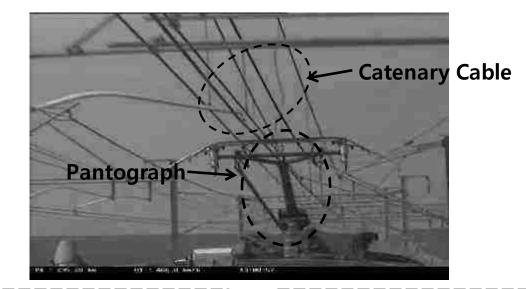
- Verifying the economic feasibility and safety through the buscentered public transportation market
- Installation of power supply line near the stopping and intersection place

KAIST

Railroad(KTX) systems

- Maximizing the charging efficiency by minimizing air gap
- Solving the speed constraint problem of railroad (KTX etc) and reducing tunnel construction cost

Passenger car


- Sharing of online electric bus infrastructure
- Utilizing the proven technology and marketability obtained through the bus and railroad project

Wireless Charging Infrastructure Projects

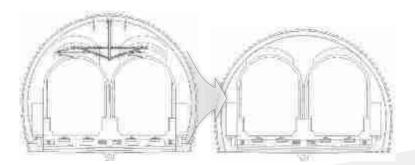
(Public parking lot, shopping mall parking lot and taxi stop area)

WPT in Railway System

Application of Wireless Power Transfer in Railway System

29

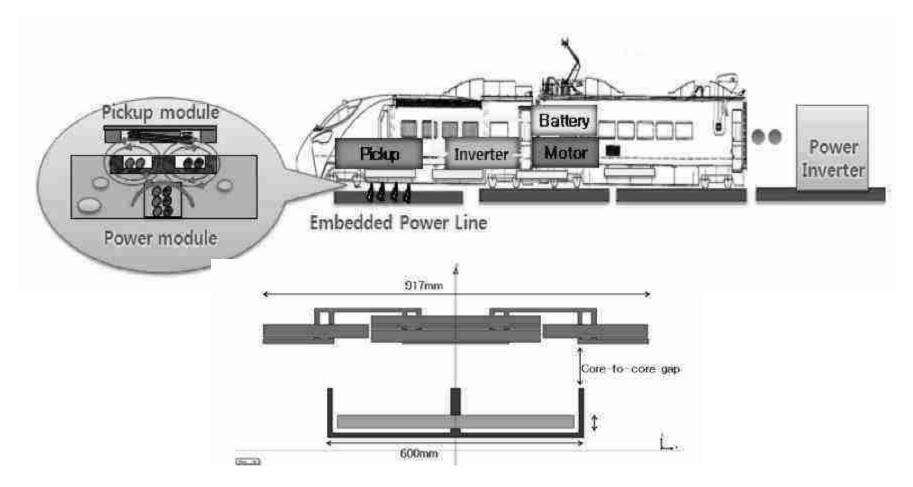
Railway Application of WPT Technology


Social Effect

Every year in Korea, 13.2 people lose their lives due to high power overhead lines.

 Economic Effect Tunnel Size Reduction (85.7m² → 74.5m²) Construction Cost: 5% Reduction

Railway Application of WPT Technology

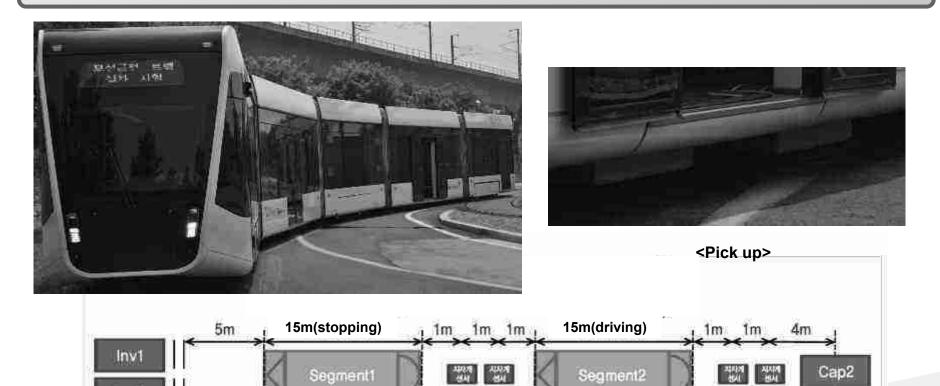

Comparison with Third Rail System

Power Supply	Cost (\$/km)
Third Rail	1,800,000
Wireless Power	750,000

Design of Wireless Power Transfer System

Smaller core-to-core gap and no lateral displacement in railway system.
 Higher frequency for higher power with low current.

Technology Transfer & Commercialization Status

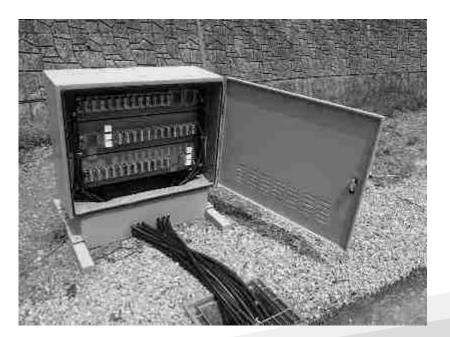

Osong Wireless Power Railway Test Site

Inv2

KAIST

Capi

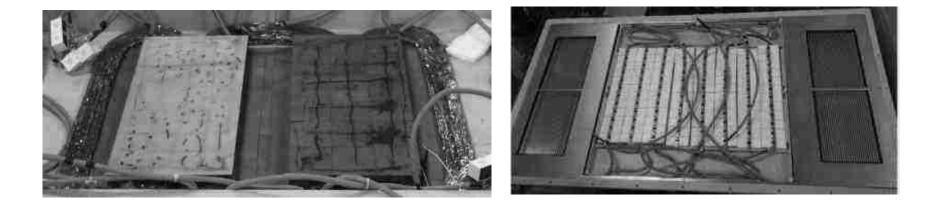
Held a demonstration of 60kHz power supply and pickup technology at the Osong Catenary-free Test Course, with its application to catenary-free trams(Jun. 4, 2013)


WPT for Tram – Configuration of Power Line Module

● Transmitter track and tuning capacitors → Tuned at 60 kHz

Capacity	200 kW	Rated current	66.6 Arms
Switching frequency	60 kHz	Segment length	15 m
No. of coil turns	6	Efficiency	> 97 %

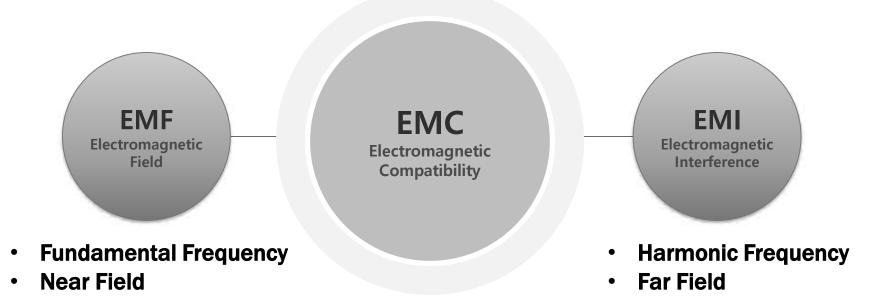
Transmitter track



Tuning capacitors

WPT for Tram – Configuration of Pickup Module

● Pickup and tuning capacitors → Tuned at 60 kHz


Rate power	60 kW/module	Rated output voltage	AC 600 V@ 60 kHz
Resonance frequency	60 kHz	Rated output current	100 A (25 A/CH)
Airgap	7 cm	Coil structure	1:2:1 layer

EMC Issues for Vehicular WPT

EMC Problems in WPT System

□ Electromagnetic Compatibility (EMC)

Standardization of Wireless Power Transfer for EV

□ ITU-R (International Telecommunication Union – Radiocommunication)

- Recommend standard frequency by unanimous approval
- Considering 100~200 kHz, 6.78 MHz for mobile, 20, 60, 85 kHz for EV, and 2.45, 5.8 GHz for Microwave Power Transmission
- □ IEC (International Electrotechnical Commission)
 - Organizing regulation and standard of each country
 - JPT61980 TC69 is in charge of WPT EV standardization

□ IEC CISPR

- Reviewing EMI regulation and standard measurement issues from electric system
- CISPR 11 WG1 TF WPT in charge of WPT EV standardization especially EM radiation

□ SAE J2954

- Non-governmental organization
- Lead by automotive industry
- > 20 kHz / 60 kHz for Heavy Duty Vehicle, 85 kHz for Light Duty Vehicle

Introduction – Biological Effect from Electromagnetic Field

Treatment of Tumor using Electromagnetic Field

🗅 www.fda.gov/MedicalDevices/Productsa	idMiedicalProcedures/DeviceA	spprovalsandClea	ances/Rec	ently-Appro	veobevices/ucm254480.htm	Q 13
FUA -	S. Food and Drug Administrat steeling and Promoting Your Health Drugs Vedical Devices Radiator-Emil			z Index Polo arth FDA Animir & Veterin	w FDX En Españal Q Isky Coxmetits	
Medical Devic						
BUILDER STORE BUILDER						
Pane > Medea	Devices -> Products and Medical Procedures	> > Device Approvals and	Overences 3 R	+couple Approved	Devces	
Recently-Approv	A Devices NovoTTF-10	00A System	- P1000	34		
2015 Device Appr	ESHARE (F. Notes)	IN LOWERON OF P	17 S 650/4	SE PRINT		
2010 Deulos Appr	vels This is a brief overview of a Stimmary of Safety and Ef product, its indentions for s	fectiveness Data (SSED)	nd product labeli			
	Product Name: NovoTTF- PMA Applicant/ NovoCun Address: 15022 MATAIn (Approval Date: April 8, 20 Approval Letter: http://www	s Loo Senter, Haifa 31905 Israe 11	_dorsypd(10/p1)	00034a.ptf	0	
	What is it? The NovoTTP- The NovoTTP-100A System which produces changing a writin the Numen body TT	n is a portable battery or p slectrical fields, called turn	wer-supply open beatment fields	sted device ("TTFlekts")	ated suffice electroises	
	How does it work? TTTiest celu. The geometrical stup electrical fields to onvoically beatment a specific to the	e and scattering of the el- break up the turnor cell in	trical charges wi antrane. The tra	thin the cluiding to	ivor cells allows T7P	
	When is it used? The Nov older) with confirmed globil (supratentional) after receiv intended as an oltemative been exhausted.	autome multiform e , following chemotherapy. The de	g confirmed lect se la intendea to	mence in un uppe de used na a ator	r legion of the brain Id-alone treatment, and is	

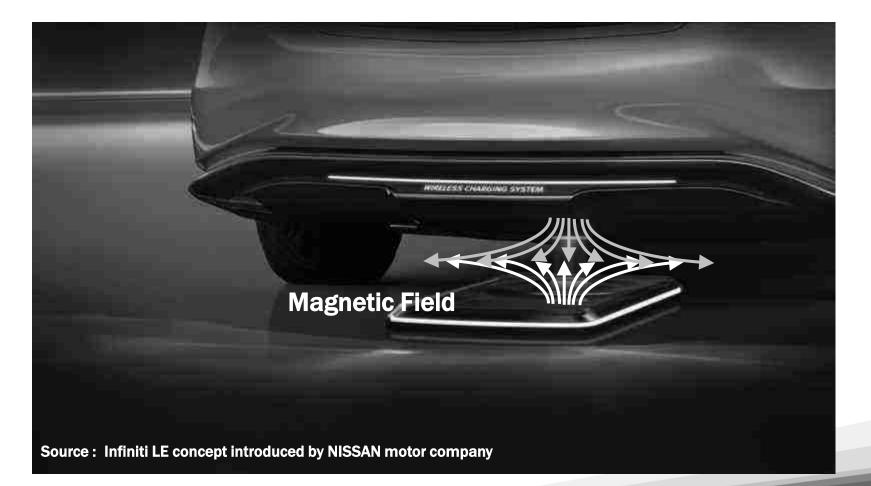
Concerns on Electromagnetic Field

Carcinogenic to humans	
Probably carcinogenic to humans	
Possibly carcinogenic to humans	
Not classifiable as to its carcinogenicity to humans	
Probably not carcinogenic to humans	

Lyon, France, May 31, 2011 -The WHO/International Agency for Research on Cancer (IARC) has classified radiofrequency electromagnetic fields as possibly carcinogenic to humans (Group 2B), based on an increased risk for glioma, a malignant type of brain cancer, associated with wireless phone use.

Concerns on Wireless Charging System

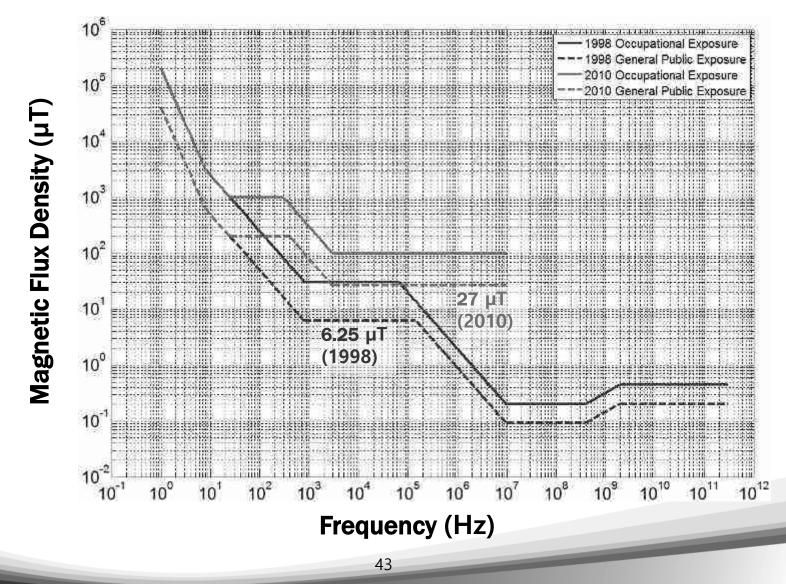
KAIST


Wireless Charging Concerns

Cost of new devices with Wireless Charging capability	14% 13% 11%
Cost of Wireless Charging pad	14% 11% 12%
Health or environmental risk of Wireless Charging (e.g. radiation exposure)	15% 8% 9%
Wireless Charging sleeve, case or battery may not be available for.,	8% 9% 7%
Ability to use devices while charging	7% 9% 7%
Charging multiple devices will take too long	5% 7% 8%
Cost of sleeve or case needed for Wireless Charging	6% 7% 6%
Having Wireless Charging with me when I need it on the go	6% 7% 7%
Devices won't be charged and ready when I need to use them	5% 5% 7%
Wireless Charging may damage my existing devices	5% 5% 6%
Adds thickness to portable devices	5% 6% 6%
Rechargeable batteries take too long to charge	4% 4% 4%
Wireless Charging pads still require a wire to plug them into the wall	■ Rank 1
Rechargeable batteries don't hold a long charge/I prefer disposable	2% 3% 3%
Wireless Charging tray or base not available in attractive form/design	Rank 3 Source : QCI

Cost of new devices and the wireless charging pad top the list of concerns for consumers.
 There is a fair amount of concern over the health and safety risks as well.

Electromagnetic Shielding


Applications of WPT to EV is being developed actively by leading companies.

EMF Regulations

KAIST

□ Guidelines of time-varying magnetic fields by ICNIRP

EMF Measurement – IEC 62110

3.1

single-point measurement

procedure to measure the field level at a specified height, used for uniform fields

NOTE The conditions under which the field can be considered as uniform or non-uniform are given in section 5.1.

3.2

three-point measurement

procedure to measure the field levels at three specified heights at a single location, used for non-uniform fields

NOTE In the case where the safety standard does not allow spatial averaging (such as [2]), then the maximum of the three measured values should be used.

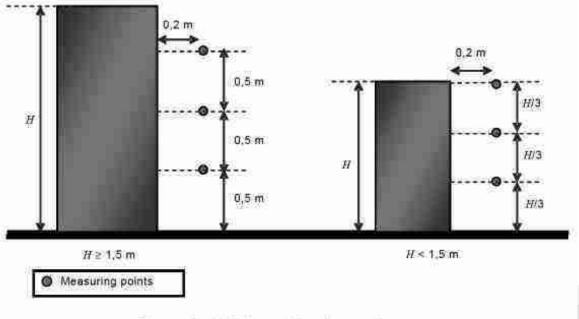
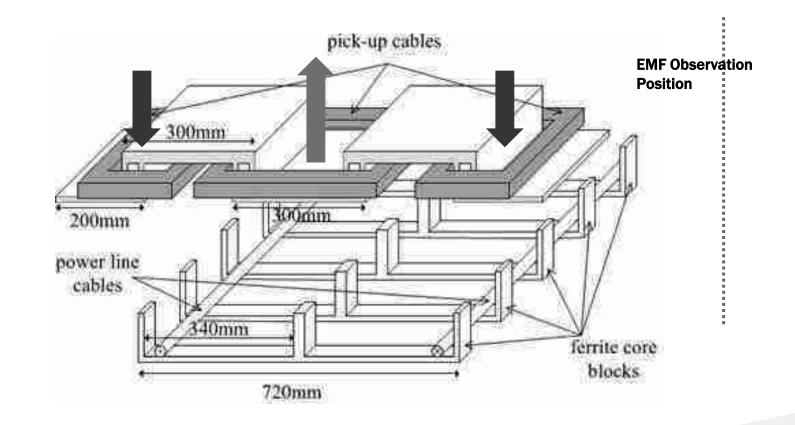
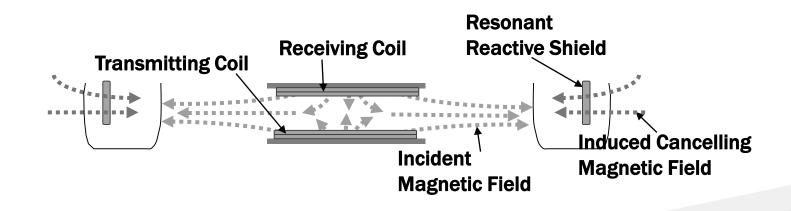



Figure 1 - Heights of the three-point measurement

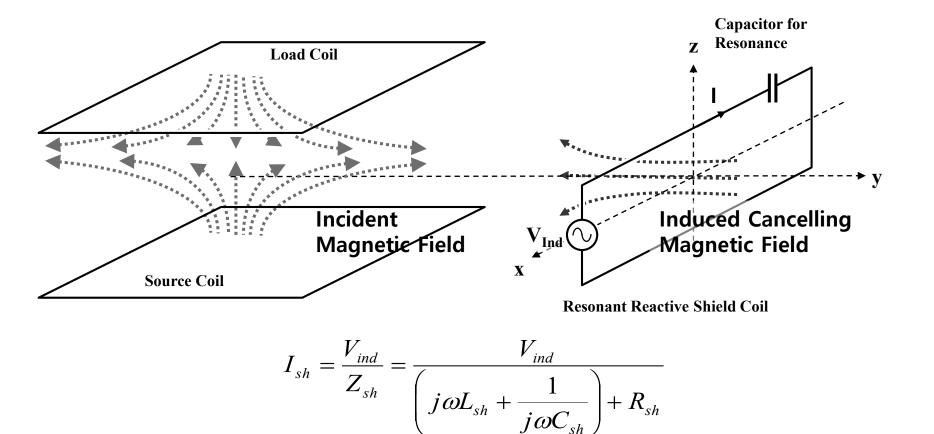
44

EMF Reduction using Magnetic Material


□ Balancing with Coil and Magnetic Material

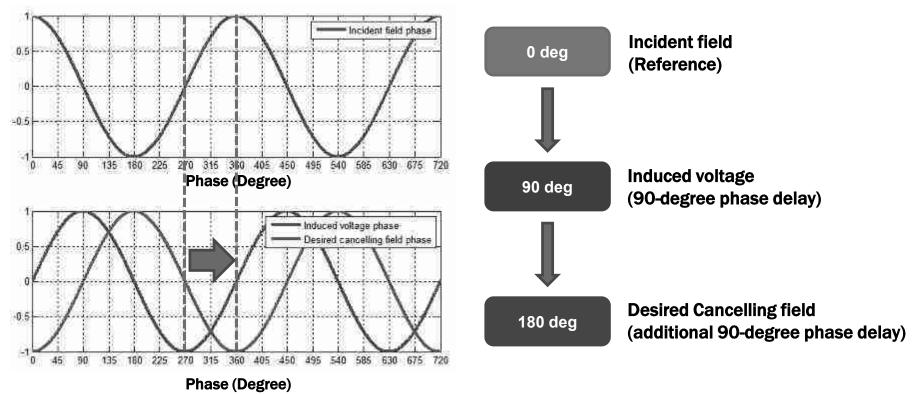
Electromagnetic Shielding

KAIST


Generation of electromagnetic field (EMF) and shielding

Reactive Shielding Coil – Type 1

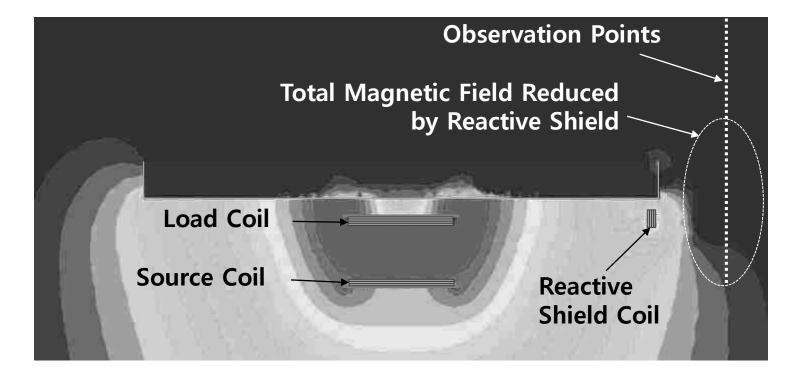
KAIST


The principle of the EMF Cancellation by using reactive shield

S. Kim, H. H. Park, J. Kim, J. Kim, and S. Ahn, "Design and Analysis of a Resonant Reactive Shield for a Wireless Power Electric Vehicle," IEEE Trans. on Microwave Theory and Techniques, Vol. 62, No. 4, pp.1057-1066, Apr. 2014.

47

Desired Phase for Maximum Cancellation


Desired phase of the resonant reactive shield current

- □ 180-degree phase difference is best condition for maximum cancellation.
- □ Resonant reactive shield current needs additional 90-degree phase delay.

Electromagnetic Field Noise

KAIST

Simulated EMF cancellation by reactive shield

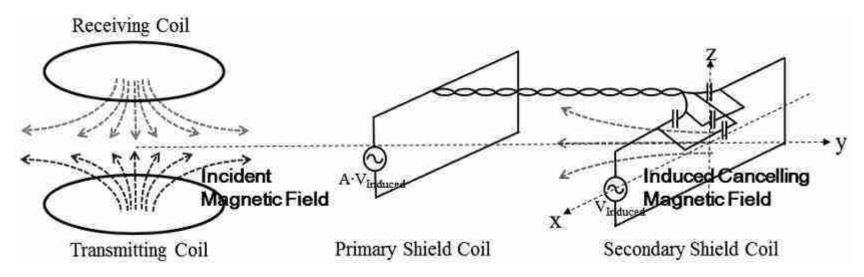
49

Measurement Setup

Dimensions of source coil, load coil, and reactive coil

Electromagnetic Field Noise

KAIST

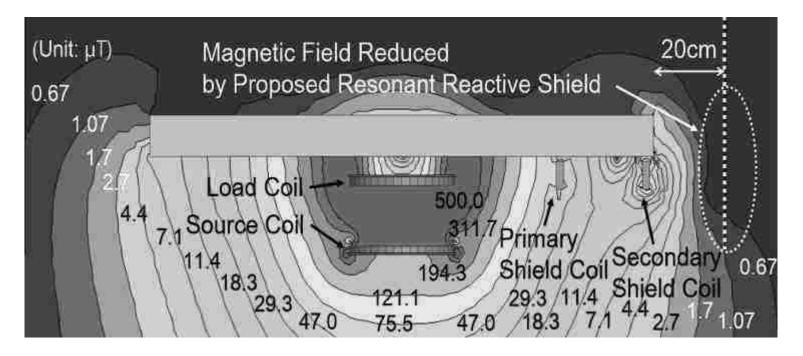

The principle of the EMF Cancellation

S. Kim, H. H. Park, J. Kim, J. Kim, and S. Ahn, "Design and Analysis of a Resonant Reactive Shield for a Wireless Power Electric Vehicle," *IEEE Trans. on Microwave Theory and Techniques*, Vol. 62, No. 4, pp.1057-1066, Apr. 2014.

Reactive Shielding Coil – Type 2

KAISI

Concept of proposed resonant reactive shield for a wireless power transfer system



- □ The resonant reactive shield generates the **induced cancelling magnetic field**.
- □ The resonant reactive shield **uses leakage magnetic field** for cancelling magnetic field.
- □ The resonant reactive shield **controls the magnitude and phase** of the cancelling magnetic field by **four capacitors**.

Simulation of the Shielding Performance

KAIST

Proposed double-reactive shield

Total magnetic field is significantly reduced at the observation position by applying the proposed double-reactive shield.

Comparison of the Results

KAIST

□ The total magnetic field is reduced by **a maximum of 80%** at 0.15 m from ground.

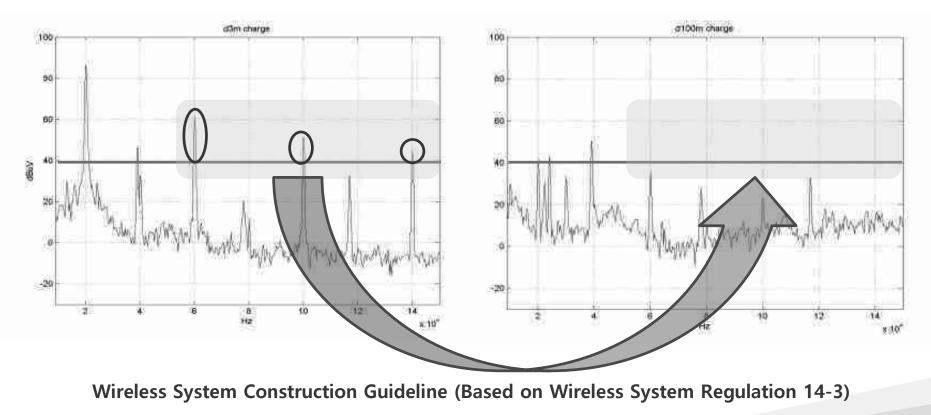
H. Moon, S. Kim, H. H. Park, and S. Ahn, "Design of a Resonant Reactive Shield with Double Coils and a Phase Shifter for Wireless Charging of Electric Vehicles," *IEEE Trans. on Magnetics*, vol. 51, no. 3, Apr. 2015.

Researches on Electromagnetic Interference

Researches on Electromagnetic Field Reduction

□ EMI Radiation Measurement at 10m

99.01 dBµV/m ◀


55.85 dBµV/m ←

Researches on Electromagnetic Field Reduction

EMI reduction from high power Inverter is required.

KAIST

→ EMI filter can reduce harmonic frequency in 150 kHz~10 MHz

Not only above 150 kHz, but also 60 kHz ~ 140 kHz

- Wireless power transfer technology is the key of future electric vehicle system.
- Fundamental and applied technologies for wireless charging electric vehicle have been done in Korea since 2009.
- Public buses are commercialized, and railway systems, and passenger cars are being developed.
- Some problems such as electromagnetic issues should be solved for commercialization.

- K. Hwang, J. Park, D. Kim, H. H. Park, J. H. Kwon, S. I. Kwak, and S. Ahn, "An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment," *Energies*, vol. 10, no. 3, Mar. 2017.
- J. Park, D. Kim, H. H. Park, J. H. Kwon, S. I. Kwak, and S. Ahn, "A Resonant Reactive Shielding for Planar Wireless Power Transfer System in Smart Phone Application," *IEEE Transactions on Electromagnetic Compatibility*, vol. 59, no. 2, pp. 695 – 703, Jan. 2017.
- 3. M. Kim, H. Kim, D. Kim, Y. Jeong, H. H. Park, S. Ahn, "A Three-Phase Wireless-Power-Transfer System for Online Electric Vehicles with Reduction of Leakage Magnetic Fields," *IEEE Transactions on Microwave Theory and Techniques*, Vol. 63, No. 11, pp. 3806-3813, Nov. 2015.
- 4. H. Moon, S. Kim, H. H. Park, and S. Ahn, "Design of a Resonant Reactive Shield with Double Coils and a Phase Shifter for Wireless Charging of Electric Vehicles," *IEEE Transactions on Magnetics*, vol. 51, no. 3, Apr. 2015
- 5. T. Batra, E. Schaltz, and S. Ahn, "Effect of Ferrite Addition above the Base Ferrite on the Coupling Factor of Wireless Power Transfer for Vehicle Applications," *Journal of Applied Physics*, 117(17), 17D517-1, Jan. 2015.
- 6. S. Kim, H. H. Park, J. Kim, J. Kim, and S. Ahn, "Design and Analysis of a Resonant Reactive Shield for a Wireless Power Electric Vehicle," *IEEE Transactions on Microwave Theory and Techniques*, Vol. 62, No. 4, pp.1057-1066, Apr. 2014.
- 7. J. Shin, S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, B. Song, S. Jeon, and D. H. Cho, "Design and Implementation of a Shaped Magnetic Resonance Based Wireless Power Transfer System for Roadway-Powered Moving Electric Vehicles," *IEEE Transactions on Industrial Electronics*, Vol. 61, No. 3, pp. 1179-1192, Mar. 2014.
- 8. S. Ahn, C. Hwang, and H. H. Park, "Optimized Shield Design for Reduction of EMF from Wireless Power Transfer Systems" *IEICE Electronics Express*, Vol. 11, No. 2, pp. 1-9, Feb. 2014.
- 9. Y. Chun, S. Park, J. Kim, J. Kim, H. Kim, J. Kim, N. Kim, and S. Ahn, "Electromagnetic Compatibility of Resonance Coupling Wireless Power Transfer in On-Line Electric Vehicle System," IE*ICE Transactions on Communications*, Vol. E97-B, No. 2, pp. 416-423, Feb. 2014.
- J. Kim, J. Kim, S. Kong, H. Kim, I.-S. Suh, N. P. Suh, D.-H. Cho, J. Kim, and S. Ahn, "Coil Design and Shielding Methods for a Magnetic Resonant Wireless Power Transfer System," *Proceedings of the IEEE*, Vol. 101, No. 6, pp. 1332-1342, Jun. 2013.
- 11. S. Ahn, N. P. Suh, and D.-H. Cho, "Charging Up the Road," IEEE Spectrum, pp. 48-54, Apr. 2013.

Thank you

60